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a b s t r a c t

Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic
(GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first
combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of
petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially
available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using
PLS1 multivariate regression were further compared with the results of traditional simulated distillation
method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in
D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of
6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for
BP determination in D3710 and MA VHP using a traditional simulated distillation method were
approximately four times larger than the corresponding RMS%RE of BP prediction using MRA,
demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising,
and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination
in petrochemical industries.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Crude petroleum is a complex mixture containing petrochem-
icals of wide range boiling point (BP) distributions. The utility of
petroleum is highly dependent on its BP, necessitating the need for
the development of analytical techniques, capable of crude oil
separation into its various components. Separation of crude
petroleum typically involves a conventional fractional distillation
(FD) technique based on differences in petrochemicals BP distribu-
tion. Unquestionably, the determination of petrochemical BP
distribution using conventional FD strategy is useful and critical.
However, FD has significant challenges and drawbacks including,
large sample size requirement, lengthy analysis time, and rela-
tively poor accuracy. The drawbacks of FD has resulted in the
current use of a simulated distillation using gas chromatography
(GC) analysis as a better alternative strategy for petrochemical BP
distributions determination in oil and gas industries [1–10].

Determination of BP of unknown sample using GC simulated
distillation approach involves a two-step procedure. In the first

step, the unknown sample is co-separated with standards calibra-
tion mixture of known BP using GC. In the second step, a
calibration curve involving the plot of BP of the standard calibra-
tion mixture versus analyte retention times is constructed. The
constructed calibration curve is then subsequently used to evalu-
ate the BP of the unknown sample. The determination of BPs
distribution of petrochemicals using simulated distillation techni-
que is not only simple and effective, but it is also rapid and
requires a relatively small sample size. In addition, this strategy
has been very effective and robust, with a reasonable BP prediction
error. This technique has become routine for simulation of petro-
chemical's BP in the oil and gas industries.

The simulated distillation approach only focused on the use of
ordinary univariate regression analysis (URA) of BP and analyte
retention times. However, the similarities and/or differences in
petrochemical structural activity relationship (SAR) could preclude
the use of URA for accurate determination of BP distribution solely
from GC retention times. For instance, analyte retention time is not
always linearly related with BP, especially for analytes with extre-
mely low or high boiling points. Besides, analyte SAR, including the
shape, size, molecular weight, number of carbons, number of
hydrogens, number of single bond, number of double bond, number
of benzene ring, and the presence of other functional groups may
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have notable influence, not only on analyte retention times, but also
on analyte elution order. In addition, analyte flash point, refractive
index, density, and melting point may affect both the analyte
retention times and elution order, hindering the use of URA for
accurate BP prediction.

In this study, we hypothesized that, the use of simulated
distillation from GC data in conjunction with multivariate regres-
sion analysis of petrochemicals structural activity relationship may
provide a better alternative strategy to improve the accuracy of
petrochemicals BP determination. The practical applications of
MRA in conjunction with SAR for accurate prediction of analyte
retention times of samples of petrochemical, pharmaceutical, and
environmental interest have been demonstrated in chromato-
graphic separation [11–15]. In a recent study, the potential utility
of molecular weight, specific gravity, and cumulative weight
fraction as inputs for artificial neutral networks for the estimation
of boiling point distributions of C7þ has also been demonstrated
[16]. Unquestionably, the use of analyte molecular weight, specific
gravity and cumulative weight fraction structural activity relation-
ship input are significant for the estimation of boiling point.
However, other analytes structural activity relationship including
density, melting point, number of carbon, number of hydrogen,
number of single bonds, number of double bonds, number of
benzene rings, flash point, and refractive index may have con-
siderable effects on the GC separation and/or petrochemical
boiling point. This study therefore reported a comprehensive and
the first combined use of a gas chromatography–mass spectro-
metry separation, analyte structural activity relationship, and
multivariate analysis for the determination of petrochemicals
BPs. The results of the BP analysis using MRA in this study were
further compared with the results of a conventional simulated
distillation method using univariate regression analysis of BP
determination from GC data. Furthermore, the study explored
the potential utility of analyte SAR in conjunction with MRA for
petrochemical pattern recognition in GC separations.

2. Experimental

2.1. Material and chemical

Methanol, 2,2 dimethyl butane, hexene, benzene, 2,2,4 trimethyl
pentane, n-heptane, toluene, p-xylene, n-nonane, n-decane, dode-
cane, n-tridecane, and n-tetradecane were obtained from Sigma-
Aldrich. A Rtx-XLB column, D3710, and MA VPH calibration mix
samples were purchased from Restek, Bellefonte, PA, USA. The
chemicals used for the study were ACS certified grade or better
purity.

2.2. GC separation and multivariate data analysis

A boiling point calibration mixture sample consisting of a 0.05%
v/v of 2,2-dimethyl butane, hexene, benzene, 2,2, 4 trimethyl
pentane, n-heptane, toluene, p-xylene, n-nonane, n-decane, dode-
cane, n-tridecane, and n-tetradecane was prepared in HPLC grade
methanol. The analytes in the calibration mixture were chosen for
the study because of variation in their structural activities relation-
ship (SAR). A 1 μL aliquot of the calibration mixture sample was
directly injected and separated using a GC instrument equipped
with a mass-spectrometer detector (GCMS-QP5000, Shimadzu).
The GC separation was performed in a Rtx-XLB column (inner
diameter: 0.25 mm; film thickness: 0.25 μm; and length 30 m).
The GC separation was performed in a temperature programming
mode to ensure better analyte resolution. The column temperature
was operated in a gradient programming mode, with an initial
temperature of 33 1C, held for 3 min at 33 1C and then increased at
the rate of 1 1C min�1 to 100 1C. The temperature was then held
for 4 min at 100 1C, and then increased at a rate of 10 1C min�1 to
200 1C. Helium (He) gas was used as the mobile phase, with a
column injection pressure of 52.1 kPa, a total flow of 30 mL min�1,
column flow of 1.1 mL min�1, linear velocity of 37.6 cm s�1, and a
split ratio of 25:1. The GC–MS interface temperature was set at
300 1C. The mass spectrometer detector was operated in a scan
acquisition mode, scanning from 40m/z to 400m/z. Each analyte
peak in the calibration mixture GC chromatogram was identified
and confirmed using the mass spectrometer.

2.3. Analyte structural activity relationship and multivariate
regression analysis

A partial-least-square (PLS1) multivariate regression analysis was
used to correlate changes in analyte structural activity relationships
and corresponding retention times from GC separation with analyte
BP in the calibration mixture. Table 1 shows the analyte structural
activity relationship and GC retention time data set used for PLS1
regression model development. The PLS1 model was carefully opti-
mized and subsequently used to predict analyte BPs in two commer-
cially available calibration gas mix samples (D3710 and MA VHP).
Multivariate data analysis was performed using chemometric soft-
ware (9.8, The Unscrambler, CAMO Incorporation, NJ).

3. Result and discussion

3.1. GC separation and multivariate regression analysis

Fig. 1 shows the chromatogram of the GC analysis of the
calibration mixture sample. Obviously, all analytes in the mixture

Table 1
Structural activity relationship of calibration petrochemical mixtures data set for multivariate analysis.

Analyte D (g mL�1 ) MP(1C) MW (g mol�1) # SB # DB # C # H RI VD FP (1C) BP (1C) RT (min)

2,2 Dimethyl butane 0.6490 �100 86.18 19 0 6 14 1.369 2.97 �29 50 1.377
Hexene 0.6780 0 84.16 16 1 6 12 1.388 3 �25 63 1.652
Benzene 0.8740 5.5 78.11 9 3 6 6 1.5 2.77 �11 80 2.211
2,2,4 Trimethyl pentane 0.6920 �107 114.23 25 0 8 15 1.39 3.9 �12 99 2.522
n-Heptane 0.6840 �91 100.2 22 0 7 16 1.387 3.5 �4 98 2.709
Toluene 0.8650 �93 92.14 12 3 7 8 1.496 3.2 4 111 3.948
p-Xylene 0.8610 13 106.17 11 3 8 10 1.495 3.7 25 139 6.635
n-nonane 0.718 �53 128.26 28 0 9 20 1.405 4.41 31 151 7.617
n-Decane 0.7300 �30 142.28 31 0 10 22 1.411 4.9 46 174.1 10.763
Dodecane 0.7500 �9.6 170.33 37 0 12 26 1.421 5.96 74 216.3 15.357
n-Tridecane 0.7560 �5.3 184.36 40 0 13 28 1.425 6.4 94 234 17.003
n-Tetradecane 0.7620 5.5 198.39 43 0 14 30 1.429 6.83 100 253 18.978
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were well resolved and eluted within 25 min. The analytes SAR
and the resulting retention time obtained from GC analysis in
Table 1 was subsequently subjected to a PLS1 multivariate regres-
sion analysis. Detailed mathematical procedures of multivariate
regression analysis for sample calibration have been reported
elswhere [17–19] and can also be found in several monographs
[20–27]. In brief, a multivariate regression equation can be
simplified and represented by the following equation:

y¼ b0þx1b1þx2b2þx3b3þx4b4þx5b5þx6b6þ………xnbn ð1Þ
where y is the dependent variable (analyte BP in this study), x1, x2,
……, xn are the independent variables (analyte density, melting
point, molecular weight, number of carbon, number of hydrogen,
number of single bonds, number of double bonds, number of
benzene rings, flash point, refractive index, and retention time in
this study), b0 is the intercept of the regression equation, and b1,
b2, ………, bn are the regression coefficents of x-variables. Eq. (1)
can be expressed in matrix notation as shown in the following
equation:

½Y� ¼ ½X�b ð2Þ
where [Y] contains the matrix values of the dependent variables
for all samples, [X] is a matrix composed of values of independent
variables of all samples, and b contains the regression vector. In
other words, the regression vector relates the independent and
dependent variables. The goal in developing any regression model

is to first determine the values of the regression vector using a
data set of known independent and dependent variables, a process
known as regression or model calibration. Once the value of the
regression vector is established from the regression equation in
the calibration phase, the value of regression vector can then be
combined with the independent variables of future unknown
samples to predict the dependent variables of the future samples.
This process is known as regression or model validation.

The assumption of a multivariate regression model is that there
is no co-linearity between x-variables. However, in practical terms,
there is often significant co-linearity between x-variables, hinder-
ing effective predictability of a multivariate regression model for
future sample. It is therefore critical to first remove any co-
linearity between x-variables to ensure accurate prediction of
future samples. Co-linearity between x-variables is usually elimi-
nated using a modern principal component analysis (PCA) techni-
que, where the original x-variable data set is transformed and
transposed to new orthogonal variance scaled data set [20–26].
Since the principal components (PCs) in the new variance scale
data set are orthogonal to each other, co-linearity in the original x-
variable data set is eliminated. Besides the removal of co-linearity
among x-variables, the dimension of a data set is often reduced,
allowing the use of relatively fewer PCs to re-represent the data,
further eliminating the inherent noise in a data set.

The developed PLS1 model in the calibration phase resulted in a
square correlation coefficient (R2) of 0.996908. A careful analysis of
the PLS1 regression model revealed that, the first two principal
components (PC1 and PC2) accounted for 99% in the variability of
the independent or x-variables data set. In addition, PC1 and PC2
also explained approximately 98% in the variability of dependent
or y-variable (boiling point) data set. Therefore, two PCs are
adequate to represent the data set. Table 2 shows the x-loading
value of each structural activity relationship variable to the PC1
and PC2. The x-loading is typically used to evaluate the contribu-
tion or significance of each independent variable in a data set to
the PLS1 regression model [20–27]. While all the structural activity
relationship variables in the data set are significant and contribute
to the PLS1 regression model for the accurate prediction of BP, the
contribution of each variable is widely varied. For example, the
presence of a double bond negatively contributed to PC1 while
analyte density, melting point, and refractive index negatively
contributed to PC2. However, other variables positively contribu-
ted to the regression model. In general, the flash point, molecular
weight, melting point, and number of single bond of petrochem-
icals were found to be the major contributors to PC1 and PC2.

Fig. 2 is the scores plot of PC1 versus PC2. A scores plot is
typically utilized for pattern recognition in a multivariate and/or
complex data set. The scores plot is also used to obtain informa-
tion that is often hidden and obscured from ordinary data
examination. The result of the scores plot obtained in this study
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Fig. 1. GC chromatogram of calibration gas mixture separation. (1) 2,2 dimethyl
butane; (2) hexene; (3) benzene; (4) 2,2,4 trimethyl pentane; (5) n-heptane;
(6) toluene; (7) p-xylene; (8) n-nonane; (9) n-decane; (10) dodecane;
(11) n-tridecane; and (12) n-tetradecane.

Table 2
X-loading of structural activity relationship variables to PC1 and PC2.

Variable PC1 PC2

Density (D) 1.82E�04 �8.35E�04
Melting point 0.441 �0.937
Molecular weight 0.583 0.299
Number of single bonds 0.142 0.13
Number of double bonds �6.41E�03 �1.96E�02
Number of carbon atom 4.04E�02 1.77E�02
Number of hydrogen atom 9.72E�02 8.52E�02
Refractive index 6.53E�05 �5.30E�04
Vapor density 2.01E�02 9.54E�03
Flash point 0.66 0.158
Retention time 9.40E�02 2.19E�02
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Fig. 2. Scores plot of PC1 versus PC2.
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was remarkable and showed interesting groupings of analytes in
the calibration mixture sample. For example, high molecular
weight, straight chain alkanes with higher boiling points (n-
nonane, n-decane, dodecane, n-tridecane, and n-tetradecane)
were grouped in the top quadrant of the scores plot. In contrast,
the low molecular weight, branched chain alkanes with relatively
low boiling points (2,2 dimethyl butane, 2,2,4 trimethyl pentane,
and n-heptane) were grouped on the left quadrant of the scores
plot. However, aromatic compounds, or compounds containing at
least one double bond, with moderate boiling points (hexene,
benzene, and p-xylene) were grouped in the bottom lower quad-
rant of the scores plot. The scores plot can therefore be potentially
used for pattern recognition and for rapid screening of future
unknown analyte identities.

3.2. Validation study

3.2.1. Determination of boiling points of D3710 and MA VPH
calibration gas mix

While the R2 of the developed PLS1 regression model in the
calibration was impressive, the practical application of any regres-
sion model is the capability of the model to accurately predict the
future unknown samples. To evaluate the accuracy of the devel-
oped PLS1 model for the prediction of BP of future samples, two
independent and commercially available calibration gas mix samples
(D3710 and MA VPH) were selected for the validation study. The
D3710 calibration gas mix consists of: 2-methylbutane, n-pentane,
n-hexane, 2,4 dimethyl pentane, n-heptane, toluene, n-octane,
p-xylene, n-propylbenzene, n-butyl benzene, n-decane, dodecane,
n-tridecane, n-tetradecane, and n-pentadecane. The BP distribution
of D3710 calibration gas mix ranged between 36 1C and 270 1C.
Also, the physicochemical properties and structural activity relation-
ship of D3710 varied widely. The MA VPH calibration gas mix is
composed of: n-pentane, 2,2,4 trimethyl pentane, methyl-tert-butyl
ether, n-nonane, benzene, toluene, ethylbenzene, p-xylene, o-xylene,
1,2,4-trimethylbenzene, and naphthalene.

The D3710 and MA VPH gas mix samples were subjected to GC
analysis under the same experimental conditions initially used for
the separation of the calibration mixture sample used for PLS1
model development. Each analyte in D3710 and MA VPH samples
were also identified and confirmed using the mass spectrometer.
Tables 3 and 4 show the analytes, SAR, and retention times of
D3710 and MA VHP calibration gas mix used for the validation
study. The developed PLS1 model in the calibration phase was
subsequently used to predict the analyte BP of D3710 and MA VPH
gas mix samples.

Tables 5 and 6 show the actual and the predicted analyte BP in
D3710 and MA VPH calibration gas mix using PLS1 multivariate
regression analysis from the calibration study. The accuracy of the
PLS1 regression model to correctly predict analyte BP was eval-
uated by a root-mean-square-%-relative-error (RMS%RE).where

% RE¼ predicted�actual boiling point
actual boiling point

� 100 ð3Þ

The validated study conducted for analyte BP prediction in the
D3710 gas mix sample resulted in a prediction RMS%RE of 6.4%.
A similar validation study conducted for MA VHP resulted in a
prediction RMS%RE of 10.8%.

3.3. Comparative analysis of boiling point determination using
univariate regression and PLS1 multivariate regression analysis

As noted earlier, the current simulated distillation method of
BP determination from GC analysis involves URA of analyte
retention time and BP. The major drawback of this method is that,
analyte BP may not be linearly related to the retention time,
especially, for analytes with extremely low or high boiling points.
For example, Fig. 3 is the plot of analyte BP versus the retention
times of the calibration mixture sample, showing a curvature in
the graph. Similar curvatures in the plots of boiling point against
the retention times at a very low or high boiling point have also
been reported by American Society for Testing and Material
standard test method for boiling point distribution of samples
[1,4,5,9,10]. A curvature or non-linearity between the BP and
retention time hinders the utility of traditional URA for accurate
prediction of analyte BP solely from the retention time. To evaluate
the effectiveness of MRA PLS1 model over the current simulated
distillation method, a URA involving direct modeling of retention
time and BP of the calibration mixture was developed.

Tables 7 and 8 show the summary of the results of validation
studies conducted for D 3710 and MA VHP using URA. The overall
prediction RMS%RE of 32.9% obtained for D3710 using URA was
approximately four times larger than the corresponding RMS%RE of
6.4% of analyte BP prediction obtained using multivariate PLS1
regression. Also, the overall prediction RMS%RE of 40.4% obtained
for MA VPH using URA was significantly larger than the corre-
sponding RMS%RE of 10.8% of analyte BP prediction using multi-
variate PLS1 regression. Obviously, the validation results of BP
predictions obtained using the multivariate PLS1 regression model
were noticeably better than similar validation studies conducted
using traditional URA. This clearly demonstrated that analyte's
structural relationship activity play significant role not only in GC
analysis, but also has a substantial influence on the capacity of the
regression model to accurately predict PB from GC separation.

Table 3
Structural activity relationship of D 3710 gas mix data set used for validation study.

Analyte D (g mL�1) MP (1C) MW (g mol�1) # SB # DB # C # H # O RI VD FP (1C) BP (1C) RT (min)

n-Pentane 0.6260 �130 72.15 16 0 5 12 0 1.358 2.48 �49 36 1.875
2 Methylbutane 0.6200 �100 72.15 16 0 5 12 0 1.354 2.60 �29 30 1.792
n-Methyl pentane 0.6530 �154 86.18 18 0 6 14 0 1.371 3 �7 62 2.225
2,4 Dimethyl pentane 0.6730 �123 100.2 22 0 7 16 0 1.381 3.48 �7 80 2.839
n-Heptane 0.6840 �91 100.2 22 0 7 16 0 1.387 3.5 �4 98 4.210
Toluene 0.8650 �93 92.14 12 3 7 8 0 1.496 3.2 4 111 5.975
n-Octane 0.7030 �57 114.23 25 0 8 18 0 1.397 3.9 13 126 6.123
p-Xylene 0.8610 13 106.17 11 3 8 10 0 1.495 3.7 25 138 8.489
n-Propylbenzene 0.8620 �99 120.19 9 3 9 12 0 1.491 4.14 42 159 10.236
n-Butyl benzene 0.8600 �88 134.22 21 3 10 14 0 1.489 1 59 183 12.941
n-Decane 0.7300 �30 142.28 31 0 10 22 0 1.411 4.9 46 174 10.991
Dodecane 0.7500 �9.6 170.33 37 0 12 26 0 1.421 5.96 74 216.3 16.966
n-Tridecane 0.7560 �5.3 184.36 40 0 13 28 0 1.425 6.4 94 234 19.230
n-Tetradecane 0.7620 5.5 198.39 43 0 14 30 0 1.492 6.83 100 253 21.113
n-Pentadecane 0.7690 9 212.41 46 0 15 32 0 1.431 7.4 132 270 22.758
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Undoubtedly, more study is needed to further reduce the predic-
tion RMS%RE of BP obtained using multivariate analysis. A lower
RMS%RE may further be achieved by increasing the number of
analytes in the calibration mixture sample. In addition, incorpora-
tion of more analyte structural activity relationship into the model
calibration may also further reduce the prediction error of analytes
boiling point. Nevertheless, this study demonstrated the super-
iority of the combined use of analytes GC retention times and
analyte structural activity relationships in conjunction with multi-
variate regression analysis for analyte boiling point determination
over the traditional use of univariate regression. The results and
the outcome of the separation of crude oil samples is expected to

remain the same as the separation of the gas mix described in this
study. The use of MRA and principal component analysis (PCA)
eliminate the noise or interference in a complex data set such as
crude oil samples. The utility of experimental design and MRA for
simultaneous optimization of chromatographic separation condi-
tions to achieve efficient chromatographic separations of challen-
ging and complex analytes have been established in our research
group [28,29]. Studies from other labs have also demonstrated the
combined use of analytical chemistry and MRA for accurate
determination of moisture, color and pH in cooked, pre-sliced
turkey hams with no interference from complex organic matrix
[30]. Also, the use of analytical chemistry and MRA for accurate

Table 4
Structural activity relationship of MA VPH gas mix data set used for second validation study.

Analyte D (g mL�1) MP( 1C) MW (g mol�1) # SB # DB # C # H # O RI VD FP (1C) BP (1C) RT (min)

n-Pentane 0.6260 �130 72.15 16 0 0 12 0 1.358 2.48 �49 36 1.829
2,2,4 trimethyl pentane 0.6920 �107 114.23 25 0 8 18 0 1.39 3.9 �12 99 3.801
Methyl-tert-butyl ether (MTBE ) 0.74 �100 88.15 17 0 5 12 1 1.369 3.1 �33.0 55.5 2.304
n-Nonane 0.718 �53 128.26 28 0 9 20 0 1.405 4.41 31.0 151 8.741
Benzene 0.8740 5.5 78.11 9 3 6 6 0 1.5 2.77 �11 80
Toluene 0.8650 �93 92.14 12 3 7 8 0 1.496 3.2 4 111 5.899
Ethylbenzene 0.867 �95 106.17 15 3 8 10 0 1.495 3.7 15.0 136 5.899
p-Xylene 0.8610 13 106.17 15 3 8 10 0 1.495 3.7 25 138 8.419
o-Xylene 0.879 �24 106.17 15 3 8 10 0 1.505 3.7 31 144 8.900
1,2,4 Trimethylbenzene 0.876 �44 120.19 18 3 9 12 0 1.504 4.1 48 168 11.243
Naphthalene 0.888 80 128.17 14 5 10 8 0 1.506 4.4 80 218 17.335

Table 5
Actual and predicted analytes boiling point in D3710 calibration mix by MRA.

Analytes Predicted
BP ( 1C)

Actual BP
( 1C)

Absolute
error ( 1C)

% RE

n-Pentane 34.2 36.0 �1.8 �5
n-Hexane 66.0 69.0 �3 �4.4
2,4 Dimethyl pentane 95.4 80.0 15.4 19
n-Heptane 97.8 98.0 �0.2 �0.2
Toluene 110 111 �1 �0.9
n-Octane 121.7 126 �4.3 �3.4
p-Xylene 136 138 �2 �1.5
n-Propylbenzene 167 159 8 5.0
n-Decane 172 174 �2 �1.2
n-Butyl benzene 192 183 9 4.9
n-Decane 171 174 �3 �1.7
Dodecane 213 216 �3 �1.4
n-Tridecane 243 234 9 3.9
n-Tetradecane 253 253 0 0
n-Pentadecane 299 270 29 11
RMS%RE 6.4

Table 6
Actual and predicted analytes boiling point in MA VHP calibration mix by multi-
variate regression analysis.

Analytes Predicted
BP ( 1C)

Actual BP
( 1C)

Absolute
error ( 1C)

% RE

n-pentane 44.2 36.0 8.2 23
Methyl-tert-butyl ether 66.1 55.5 11 19
Benzene 93.7 80.0 14 17
2,2,4 trimethyl pentane 93.3 99.0 �6 �5.8
Toluene 113 111 2 12
Ethylbenzene 128 136 �8 �6
p-Xylene 141 138 3 2
N-Nonane 146 151 �5 �3
o-Xylene 147 144 3 2
1,2,4-Trimethylbenzene 169 168 1 0.6
Naphthalene 211 218 �7 �3.2
RMS%RE 10.8
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Fig. 3. Plot of analyte boiling point versus retention time of calibration mixture GC
separation.

Table 7
Actual and predicted boiling point in D3710 calibration mix sample by univariate
regression analysis.

Analytes Predicted
BP ( 1C)

Actual BP
( 1C)

Absolute
error ( 1C)

% RE

n-Pentane 79.8 36 44 122
n-Hexane 86.6 69 17.6 26
2,4 Dimethyl pentane 89.8 80 9.8 12
n-Heptane 104 98 6 6
Toluene 122 111 11 9.9
n-Octane 124 126 �2 �2
p-Xylene 149 138 11 8.0
n-Propylbenzene 167 159 8 5
n-Decane 175 174 1 0.6
n-Butyl benzene 195 183 12 6.6
n-Decane 175 174 1 0.6
Dodecane 237 216 21 9.7
n-Tridecane 260 234 26 11
n-Tetradecane 280 253 27 11
n-Pentadecane 297 270 27 10
RMS%RE 32.9
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determination of the quality parameters, including the protein, fat
and moisture content and the free acidity of intact olive fruits [31]
and other agricultural product with no sample preparation have
been well documented [32,33]. Furthermore, the quantitative
measurement of muscle oxygen saturation without influence from
skin and fat spectroscopic analysis and in-vivo, noninvasive
measurement of muscle pH during exercise [34,35] using analy-
tical chemistry and multivariate regression analysis have been
established. The reported strategy in this study is therefore
promising and with further study, has a potential practical
application for accurate petrochemicals BP determination. The
method can be used as an alternative method to conventional
fractional distillation for the determination of the boiling point
distribution of gasoline products. Besides, the method will find
practical application for quality control and quality assurance in oil
and gas industries for rapid screening, pattern recognition and
accurate petrochemicals BP determination.

4. Conclusion

In conclusion, this study explored the potential utility of a
combined utility of GC–MS separation, analytes structural activity
relationship (SAR), and multivariate regression analysis (MRA) for
effective pattern recognition and accurate petrochemicals boiling
point (BP) determination. The results of this study indicate that
analyte SAR and GC data can be modeled to correctly predict
petrochemicals BP, with low prediction error. Besides, while all
variables are significant and contributed to the model predictive
ability, molecular weight, flash point, melting point, and analyte
retention time were found to be the most significant variables,
influencing the performance of regression models for accurate BP
prediction. The results of the validation studies conducted for
D3710 and MA VHP demonstrated the superiority of multivariate
regression over the conventional univariate regression analysis for
accurate petrochemical BP determination from chromatographic
data. The BP determination strategy reported in this study is more
appealing and advantageous to traditionally fractional distillation
strategy for petrochemicals' BP determination. First, this method is
rapid and requires small sample size, reducing both the cost and
analysis time. In addition, the method is robust, once the regres-
sion model is developed and properly calibrated it can be routinely
used in a refinery for petrochemical BP determination without
the need for recalibration, further reducing the cost and time of
analysis. Furthermore, the technique can be potentially used for
fast screening and pattern recognition of new petrochemical
products.
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Table 8
Actual and predicted analytes boiling point in MA VHP calibration mix by
conventional univariate regression analysis.

Analyte Predicted
BP ( 1C)

Actual BP
( 1C)

Absolute
error ( 1C)

% RE

n-Pentane 79.3 36 43 120
Methyl-tert-butyl ether 84.3 55.5 28.8 52
Benzene 97 80 17 21
2,2,4 trimethyl pentane 99.8 99 0.8 0.80
Toluene 122 111 11 9.9
Ethylbenzene 144 136 8 6
p-Xylene 148 138 10 7.2
N-Nonane 151 151 0 0
o-Xylene 153 144 9 6
1,2,4-Trimethylbenzene 177 168 9 5
Naphthalene 241 218 23 11
RMS%RE 40.4
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